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Abstract. The critical behaviour of Dyson’s hierarchical Ising model is studied in the 
presence of a random field. Simple scaling relations determine the exponents 7, exactly 
for random fields with either short- or long-range correlations. The Schwartz-Soffer 
inequality +j G 277 is satisfied as an equality provided the random-field correlations are not 
too long ranged. For short-range random fields, the exponent v is calculated to order 
E = A -2, where A is the ‘range parameter’ of the Dyson model. The exponent U is also 
computed to O(E’ ) ,  with E = ~ A  -3, for the hierarchical O ( n )  model in zero field: the 
results reveal striking similarities with the exponents of the corresponding one-dimensional 
model with long-range interactions. 

1. Introduction 

The Dyson hierarchical model [ l ,  21 was introduced to clarify the existence of phase 
transitions in one-dimensional spin systems with long-range interactions. While simu- 
lating a system with power-law interactions, it has the advantage that renormalisation 
group (RG) transformations can be applied to it exactly [3]. The critical behaviour of 
the model is determined from the fixed-point solutions of a non-linear integral equation 
[4] via a linear stability analysis. The integral equation has a Gaussian solution, valid 
in the classical regime, for the spin weight, which can be expanded about to give the 
critical exponent v in the non-classical regime. This is similar to expansions about an 
upper critical dimension in RG calculations for short-range systems: the ‘range para- 
meter’ A of the Dyson model plays a role similar to that played by the spatial 
dimensionality d in systems with short-ranged interactions. 

In § 3 this calculation is performed for the C( n )  model in zero field, and the results 
compared with those given in the literature for the special case n = 1 (i.e. the king 
model). We find agreement with Kim and Thompson [5] but not with Blekher and 
Sinai [4]. We also compare our results with those for the corresponding one- 
dimensional O ( n )  model [6]. To order E’ the only difference between the exponents 
v is a small change in the numerical prefactor of the E *  term-there is no change in 
the functions of n which appear to this order! 

With the close agreement between the long-range one-dimensional and hierarchical 
models in mind, we consider in § 2 the Dyson model with a random field. Both 
correlated and uncorrelated random fields are considered. The random-field correla- 
tions are chosen in a similar way to the exchange interactions-they are long range 
with a power-law dependence on ‘distance’. A non-linear integral equation is derived 
and we look at the fixed points to determine perturbatively the critical exponent Y of 
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J / Z A  

the model. By contrast, the exponents 7, f j  are determined exactly by simple scaling 
equations, where the observation [7-91 that the critical behaviour is controlled by a 
zero-temperature fixed point plays a crucial role. Two universality classes are iden- 
tified-one controlled by a fixed point with a random field of short-range character, 
the other with one of long-range character. These results are in agreement with previous 
work [ 7 ] .  

J 1 2 A  

2. The Dyson model with a random field 

r 
J 

Consider a Dyson hierarchical model in one dimension, with coupling between spins 
as in figure 1. The zero-field Hamiltonian is 

Ho = - J,,S,Sj 
i < j  

=-J(S lS*+S3S4+.  . a )  

- ( J /  2 A  ) [ ( S I  + s2) (s3 + s 4 )  + (s5 + s6) (s7 + s8) +. . .I 
- (J /22A)[(s~+~~+s3+s~)(s~+~6+~7+s~)+.  .I- .  . . (1) 

The first-level spin coupling J is a positive constant, and the ‘range parameter’ A 
controls the rate of decay of the exchange interactions with increasing level in the 
hierarchy. The model simulates a system with long-range ferromagnetic interactions 
decaying with distance as l / r A .  The partition function is given by 

J J J 

where p is the reciprocal of the temperature T, H is the Hamiltonian and W ( S )  = 
W (  -S) is the spin weight function. 

If a random field h, is added at site i, and a uniform field h is also applied, the 
full Hamiltonian H is 

H = H Q - E  h,S, - h E SI. (3) 
I , 

The random fields are chosen to have a Gaussian distribution, with correlations given 
by 

( h i ) h  = 0 ( h ? ) h  = h g R  (4) 

51 52 53 5 4  55 5.5 51 58 

Figure 1. Dyson’s hierarchical model. 
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and 

and so on, where ( ) h  indicates an average with respect to the random-field distribution. 
The long-range random-field correlations are seen to have the same structure as the 
exchange couplings {J,}-they simulate a system with random-field correlations ( hihi), 
decaying as l / r ; .  

In order to average over the disorder introduced by the random fields, the replica 
method [ l o ]  is used. The replica index is a = 1 ,  . . . , n, with n + 0 ultimately. Thus 

where DS = n,,, dSY . The general form of the spin weight function used in (6) allows 
for the possibility that different replicas will become coupled after coarse graining. 
Initially, W ( { S e } )  = E m  W ( S " ) ,  with the property that W is invariant under S" + - S a  
for any a. We shall see that this symmetry is preserved by the coarse-graining procedure. 

For Gaussian random fields 

so the field average of 2" becomes, using ( 4 )  and ( 5 ) ,  

+1 2p 2 hSR 2 s p s f + p 2 h t R  ( s ~ s ~ + S ~ S f : + .  . .) 
i ,@ 4 

+ ( P 2 h E ~ / 2 / " )  [ ( s ; l+S ," ) (S ,P+S! : )+  . . . ]+.. .+P h c S S  ) . (8) 
4 i, a 

A coarse-graining procedure can now be performed to obtain RG equations for K = 
p J ,  h S R ,  hLR,  h and W({Sp}). These are obtained in the usual way by an elimination 
of 'hard' modes, accompanied by a rescaling of the spin variables. The first step is to 
introduce 'soft' and 'hard' block-spin variables via the transformation 

S4 + s4+1= 2Y(+G+1),2 (9) 

Sp - Sp+l = 2Trj+l)/2 (10 )  

where i takes odd values only and y is the spin rescaling factor. Substituting (9) and 
( 1 0 )  into (8) and integrating out the 'hard' modes ( 7 4 )  yields an expression for (Z") ,  
which, apart from a multiplicative constant, has the same form as (8) but with new 
coupling and field strengths, 

( 1 1 )  K'=22-A 2 Y K  
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with 

K = p J  

and a new spin weight W'({aa} )  given by 

exP(- W'({a"}) )  = z ( { a a l ) / I ( o )  

where 

I ( { a " } )  = (v dr")  exp (- W ( {  ya" + T ~ } )  - W ( {  ya" - re}) 

+p'(h:R- h t R )  TaTP - K  ( T ~ ) ~ + ~ ' K  (aa)' . (17) 
aD a a 1 

Notice that the site indices have been dropped from (16) and that W ' ( a )  has been 
normalised such that W'(0) = 0. 

In order that (13) be exact, it is important that no terms of the form E,, aauP 
appear in Z({aa}), since these would represent additional contributions to hkR.  The 
absence of such terms is, however, guaranteed by the symmetry of W ( { a a } )  under 
aa+-aa for any a. According to (17), I ( { a a } )  possesses the same symmetry, so 
while terms like E,, (c~~a)'(a~)' can be generated, terms like E,, asap cannot. 

We now have all the information needed to study the critical behaviour of the 
hierarchical model in a random field. First we will look at the short-range problem. 

2.1. Short-range random field 

In order to calculate the 'upper critical parameter' A, for the short-range random-field 
problem (such that no phase transition is possible for A > A,), we note that at the 
zero-temperature zero-random-field fixed point (see figure 2 )  the spin weight is given 
by the bimodal distribution, exp{- W ( S ) }  =+ [8 (S-  1)+ 6 ( S +  l)], with spin rescaling 
factor y = 1. From (11) and (13) we get (with h L R  = 0 and y = 1) 

( h S R /  J ) '  = 2*-3'2( h s R / J )  (18) 

T I J  

Figure 2. Schematic RC flows for the Dyson model in a random field, for the case where 
the random-field correlations are short-ranged. ( a )  A <$, ( b )  A >$. 
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implying A, = 2. For A > 2, hSR is a relevant perturbation at T = 0: the ferromagnetic 
order is destroyed by a weak random field. For A <$, hSR is irrelevant: the zero- 
temperature zero-random-field fixed point is stable with respect to the random field, 
implying that the ferromagnetic order survives in the presence of a weak random field. 
Schematic RG flow diagrams are shown in figure 2. 

In order to study the non-trivial zero-temperature fixed point at non-zero random 
field, the spin rescaling factor y must be chosen to keep hsR/J  fixed. From ( 1 1 )  and 
(13 )  this requires y = 2h-3'2 at the non-trivial fixed point, giving 

(19 )  

J'  = 2"'J. (20 )  

h '=  2h-1/2h 

Scaling laws derived by Bray and Moore [ 9 ]  may now be used to compute the critical 
exponents 7 and f which describe the decay at criticality of the connected and 
disconnected correlation functions respectively [ 9 ] :  

( ( S O s r h -  ( s O ) T ( s r ) T ) h  - T /  rd-2*.rl ( 21 )  

( ( s O ) T ( s r ) T ) h  - l/rd-4+il (22 )  

where ( )T indicates a thermal average. On the Dyson lattice d = 1 ,  and r has to be 
reinterpreted as 2', where 1 is the level of the hierarchy through which sites 0 and r 
are connected. Bray and Moore [9]  found that if, after coarse graining at the non-trivial 
zero-temperature fixed point, the rescaling of h and J is given by 

h' = b"h J '  = byJ (23 )  

where b is the length rescaling factor, then 

7 = d  + 2 + y - 2 ~  f = d 4 - 4 - 2 ~ .  

Using (19 ) ,  (20 )  and d = 1 yields 

q = 6 - 2 A  = 2 7 .  

The exponents 17, f satisfy the Schwartz-Soffer inequality [ l l ]  f ~ 2 7  as an equality. 
Thus two of the three independent exponents [8 ,9]  are trivially determined on the 
Dyson lattice, for all A < A,. 

It is also possible to calculate the correlation length exponent v for A close to the 
lower critical value A,  such that 'classical' exponents are obtained for A < A , .  Putting 
W ( { u a } )  = r E m  (U")'+ U Z a  into (17 ) ,  and treating the u4 term perturbatively, 
gives, to lowerst non-trivial order in h iR ,  

r'= y2(2r-K+6uP2h$,q2)  (26 )  

U'= y4(2U - 7 2 U 2 P 2 h i ~ q 3 )  (27 )  

where q = 1 / (  K + 2 r )  and, as noted earlier, y = 2h-3'2. Terms in U in (26) ,  and in U' 

in (27)  (without accompanying factors of hgR),  have been dropped, as these correspond 
to irrelevant thermal fluctuations, and the limit n + 0 has been taken explicitly. Making 
the changes of variable i=  r / K ,  c j =  qK,  U' = (P2hg , /K3)u  yields 

(28) 

(29) 

7 = 2A--1( ;- 4 + 3 c i 2 )  

U"= 2 3 ~ - 4  (U'  - 36C2cj3). 
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Thus A, = $: for A < +, U’ is an irrelevant perturbation at the Gaussian fixed point and 
1 / v  = A - 1. For A >+, with E = A -? small, linearising (28) and (29) about the non- 
Gaussian fixed point in the standard way gives 

l / ~ =  A - 1 - E  + O ( E ~ ) .  (30) 
As mentioned above, the coarse-graining procedure eventually couples different replicas 
together, so it might be wondered if the assumed form for W ( { a a } )  is adequate. The 
leading term coupling different replicas, and consistent with the symmetry of the 
problem, has the form U X o p  ( C T ~ ) * ( C T ~ ) ~ .  It is easy to show that the fixed-point value 
of U is order E ’ ,  so that (30) is unchanged at order E.  

2.2. Long-range random j e l d  

To determine whether a long-range random field is a relevant perturbation at the 
short-range random-field fixed point, we look at the scaling of x = ( hLR/ hSR)’ under 
the RG. From (12) and (13) we find 

X I =  2’-@x/( l  + x )  (31) 
so a long-range random field is relevant if (and only if) p < 1 .  In the following we 
restrict ourselves to this case. 

To determine the upper critical parameter A, we follow the method used in § 2.1 
and look at the zero-temperature zero-random-field fixed point. From (1 1) and (12), 
with y = 1, 

(32) (ALR/ J)’= 2’-1-@/2 ( h L R /  J) . 
Hence A, = 1 + ip :  for A < 1 +$p, hLR is an irrelevant perturbation (with respect to the 
exchange coupling) and the ordered phase is stable against a weak random field. 

At the non-trivial zero-temperature fixed point, y = 2’-1-p/2 keeps hLR/J fixed and 
(1 1) and (14) yield 

(33) 

J’= 2’--’1 J. (34) 

h ’ =  2”-’1/2h 

Using (23) and (24), with d = 1, gives 

77=3-A i j  = 5-2A +pa  (35) 
Note that 277 - i j  = 1 - p > 0 at the fixed point controlled by the long-range random 
field, so the Schwartz-Soffer inequality [ 113, 277 - i j  3 0, is again satisfied. 

It is clear that there are two universality classes for the Dyson model with random 
fields. One is associated with random fields of short-range character, or long-range 
with p > 1, the other with long-range random fields with p < 1. For the former class, 
277 - i j  = 0; for the latter, 277 - i j  = 1 - p. In all cases 7 = 3 -A.  These two universality 
classes correspond to two (called L R E  and L R E F  in [ 7 ] )  of the four identified by one 
of us [7] for general systems with long-range exchange interactions and/or long-range 
random fields. 

3. O(n) ferromagnet in zero field 

In this section we demonstrate the very close agreement between the critical exponents 
for the Dyson model of a ferromagnet and the exponents of the corresponding 
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one-dimensional model with power-law interactions. For generality we consider an 
O(n) model, i.e. a ferromagnet in which the spins are vectors in an n-dimensional 
space. The comparison we make is between the Dyson model with parameter A and 
the one-dimensional model with interactions falling off as r-" ( A  < 2  is assumed, to 
ensure a phase transition [1,2]). The exponent 7 is known to be the same for both 
models: 7 = 3 - A .  Below, we show that the exponent v is also remarkably close for 
the two models, at least to order E ' ,  where E = 2A - 3 measures the deviation of A from 
its lower critical value A, =f. This leads us to believe that results obtained via the 
Dyson model should be reasonably reliable, at least qualitatively (see, however, the 
discussion in the following section). 

The partition function for the Dyson O ( n )  model is 

Z = [  ( F d " S i ) e x p ( - E  I W(Si )+p  

Coarse graining and rescaling the spin variables as before, via the transformations 

for i odd, and integrating out the hard modes {T}, we obtain 

K'=(4y2/2')K (39) 

exp[- W'(a)] = I ( c ) / I ( O )  (40) 

where 

I ( ( + )  = d"7 exp[- W ( y a  + T) - W ( y a  - T)+ K ( y 2 a 2 -  .')I. (41 1 I 
Equations (39)-(41) have a Gaussian fixed point at non-zero temperature. At such a 
fixed point K is constant, so from (39) y = 2"'*-'. For A <f, the Gaussian fixed point 
is stable, and yields [4,5] 1/ v = A - 1. For E = 2A -3 small and positive, v can be 
computed as a power series in E by including perturbative corrections to the Gaussian 
spin weight. This process is simplified by the following change of variables: 

Note that neither the critical (i.e. fixed-point) value of K nor the fixed-point spin 
weight are universal, but depend on the choice of initial spin weight. The value of K 
at the fixed point is a free parameter-different choices lead to different fixed-point 
spin weights, but the same set of critical exponents. A convenient choice is K = 
(2"--'- 1) / (2" - l ) ,  which yields 

exp[-P'(a)] = J ( a ) / J ( O )  (43) 

with 

J (  a )  = d" T exp[ - P (  y a  + T) - P( y o  - T) - T ~ ] .  (44) 

This equation is identical to that derived by Baker [3] for the hierarchical model. It 
is the same as the approximate RG equation of Wilson [ 121, in one dimension for A = 3.  

I 
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To expand about the Gaussian fixed point we put 

~ ( a )  = r a 2 +  u a 4 +  v u 6  (45) 
in (44). Retaining terms up to O ( a 6 )  is sufficient to compute v to O ( E * ) .  Expanding 
the exponential in (44) in U and v yields recursion relations 

r‘ = 2”’[r+ ( n  +2)uq -2(n +2)*u2q3+.  . .I (46) 

[U - 2( n + 8) u2q2 + 4(3n2 + 26n + 52)u3q4 + q(3 n + 12) vq + , . .] (47) 

[v+?(n+26)u3q3+.  . .] (48) 

= 2 2 ~ - 3  

= 23“-5 

where q = 1/( 1 +2r).  
From (47) we see that the lower critical parameter A i  = :. For A < j  the Gaussian 

fixed point (U = 0 = v )  is stable and, from (46), 1/v = A - 1. For E = 2A -3 small we 
get, by linearising around the non-trivial fixed point of (46)-(48), 

(n + 2)(7n + 20) 
(49) ( n  +2) 

( n + 8 )  (n+8)3 
1/ v = A - 1 - E - - E *  (In 2)( 3 + 4d2) 

For n = 1 this result agrees with that of [5], but disagrees with that of [4], which we 
conclude is incorrect, at O ( E ~ ) .  

Equation (49) can also be compared with the result for the one-dimensional O( n) 
model [6] with long-range interactions decaying as r -” .  Remarkably, the latter 
expression for l / v  has the same combinatoric factors (i.e. the same functions of n) as 
(49). The only difference to O ( E * )  is in the overall coefficient of the E *  term. Instead 
of the factor (In 2)(3 +4d2)  the authors of [6] obtain (4 In 2 +  T ) .  These two numbers 
differ by about I t%.  In addition, the exponent 7 is the same for both models, 7 = 3 - A. 

4. Discussion 

Close agreement between the E expansions for the Dyson model and the equivalent 
one-dimensional model was noted in the previous section. Most remarkable is that 
the functions of n which appear are the same for both models. This is especially 
surprising if one thinks in terms of a graphical analysis of the perturbation expansions. 
The familiar ‘water melon’ diagram, for example, containing three internal lines, is 
absent for the Dyson model since, when (44) is expanded as a power series in a2, 
only terms involving even powers of both w and T appear. The water melon diagram, 
which enters the RG equation for r at order U’, contains two vertices, each coupling 
one ‘soft’ mode to three ‘hard’ modes. Such a vertex, corresponding to a term of the 
form m3, is absent for the Dyson model. Similarly there are terms which appear in 
the RG equations for U and v in the one-dimensional problem which have no analogue 
in the Dyson model. Despite these differences, the functions of n entering the 
exponents, although seeming to depend crucially on the particular diagrams which 
appear, are in fact the same for both models, at least to order E’ .  We conclude that 
the Dyson model captures even more of the physics of one-dimensional systems with 
long-range interactions than is at first apparent. 

The above considerations provided some of the motivation for studying the Dyson 
model with random fields. Recently, Weir et a1 [13] have studied the related one- 
dimensional long-range model with random fields, and it is interesting to compare 
their results with ours. Their approach is to derive renormalisation group equations 
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for the Hamiltonian parameters by eliminating close pairs of domain walls. This is a 
systematic procedure, in principle, for A less than, but close to, A,  = ;, with E = i - A 
appearing as a small parameter. With the assumption that the random-field distribution 
stays Gaussian under renormalisation, Weir et a1 obtain RG equations for J, h S R ,  h 
and the chemical potential p of the domain walls. These equations yield results 
identical to ours to first order in E. Further study, however, reveals that the random-field 
distribution does not, in fact, stay Gaussian: the high-order cumulants become large 
after coarse graining, indicating, Weir et a1 speculate, a first-order phase transition. 
Further work, however, is needed to substantiate this conjecture. In the Dyson model, 
by contrast, the field distribution does stay Gaussian, as we have seen. 

In conclusion, the Dyson model without random fields captures rather well the 
physics of the corresponding one-dimensional system with long-range interactions, 
whose behaviour in turn mirrors, as a function of A, the behaviour of short-range 
systems as a function of d. In the presence of random fields, the Dyson model has a 
continuous phase transition with exponents 7, fj which satisfy the Schwartz-Soff er 
inequality i j  s 27 as an equality, provided the random-field correlations are not too 
long ranged (i.e. provided p > 1). With random fields, however, the behaviour of the 
Dyson model may be qualitatively different from that of the corresponding one- 
dimensional model [13]. Further work is needed to clarify these differences and the 
relation to short-range systems in higher dimensions. 
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